
ARMADA Middleware and
Communication Services

Farnam Jahanian
Real-Time Computing Laboratory

Department of EECS
University of Michigan

http://www.eecs.umich.edu/RTCL/armada/

Project Overview

Objective:
� Design, develop, and demonstrate a software environment for

building embedded real-time applications on distributed platforms.
� Joint project between University of Michigan and Honeywell

Technology Center

Four complementary thrust areas:
� Real-time communication services
� Middleware Services for fault-tolerant group communication
� Dependability evaluation and validation tools
� Application demonstration

ARMADA Architecture

Applications

Middleware
Services

Evaluation
Tools

API

Real-Time
Channels

Microkernel

Target Applications

� Embedded fault-tolerant applications

� Industrial and manufacturing systems

� Distributed multimedia

� Air traffic control

Key Challenges:

� Timely delivery of services with end-to-end real-time constraints

� Dependability of services in the presence of h/s failures

� Scalability of computation and communication resources

� Exploitation of open systems and emerging standards in
operating systems and communication services

Radar Tracking and Analysis
Application

Requirements:
� End-to-end timing constraints on computation & communication tasks

� Dependability in the presence of faults

ARMADA Unicast Communication

Real-Time Channel Paradigm
• Simplex, fixed-route, unicast virtual connection with sequenced msg
• End-to-end deterministic delay and bandwidth guarantees

Key Features

• Three phases: channel setup, data transfer, channel teardown
• Traffic Specification: max. message size, max. burst, max. msg. rate
• QoS specification: desired worst-case end-to-end delay
• Admission control, traffic enforcement, resource scheduling

Source I I Target

request

reply
I: Intermediate nodes

Software Architecture for Real-Time
Communication

Real-Time Channel Protocol Stack

ARMADA Middleware Services

• Atomic, totally-ordered group communication
• Provides group membership service
• Supports hard or soft real-time deadlines

RTCAST Real-time Group Communication

RTPB Real-time Primary Backup Service

• Fault-tolerant primary-backup replication
• Supports temporal consistency between P/B
• Low overhead and fast response

The RTCAST Framework

Real-time Process Groups API

Clock Synchronization Virtual Network Interface

Unicast Datagram Communication

Admission Control and
Schedulability Analysis

Group Membership
Service

Timed Atomic
Multicast

Scalable, Priority-based Inter-group
Communication

� Construct scalable distributed systems through modular group composition

� Address timeliness requirement via priority-based inter-group communication

Real-Time Primary-Backup (RTPB)
Replication

� Enforces external and inter-object consistency guarantees
� Backup is guaranteed to be consistent within a specified time bound
� Primary selectively sends updates to the backup

ARMADA Implementation Framework

� Services are implemented in Open Group’s CORDS protocol framework

� Run on the MK (RT Mach) 7.2 operating systems on Pentium PCs

� Services can be used in either user-level or in-kernel protocol stacks

ARMADA Implementation Framework

Orchestra Fault-Injection
Environment

Real-Time Hypothesis Testing:
A RADAR tracking application

Armada machines running RTHT code

Real Time Hypothesis Testing

� Hypotheses are combinations
of radar returns (from frame to
frame) that could form tracks.

� There exist 100’s points per
frame, and 100,000’s of
hypotheses.

� Hypotheses are scored by their
likelihood to be true. Unlikely
hypotheses are pruned to
avoid state explosion.

Frame 1 Frame 2 Frame 3 Frame N

Frame 1 Frame 2 Frame 3 Frame N

Time

Several Hypotheses

Best Hypotheses

When ranking the best hypotheses
across all processors, interprocessor
communication is required
with a coordinator. Otherwise, all
computation is independent. How
communication is handled is an
important part of different
fault-tolerant schemes.

One iteration of hypothesis testing

Steps in iteration local to processor:

1. Get new frame
2. extend hypothesis onto new frame
3. rank hypothesis globally
4. prune local hypothesis

Coordinator

Fault Tolerance in RTHT

� Each processor keeps track of a portion of the hypotheses.

� If a processor fails, its hypothesis are lost and we lose
information on possible threats.

� The application must be constructed to achieve fault
tolerance so that we reduce the chance of losing valuable
information if a node fails.

� ARMADA calls facilitate the construction of several fault
tolerance strategies.

Fault Tolerance Strategies

� Full replication of computation and data (hot spare)
– Coordinator aware of replication
– Coordinator unaware of replication

� Replication of data (not computation) on processor pairs;
recovery on partner

� Replication of data on processor pairs with spare nodes
used for recovery

Current Project Status

� Implementation and demonstration of real-time channels on
OSF MK 7.2. Includes support for signaling and data transfer

� Detailed parameterization and profiling of RTC protocol stack
� Implementation and evaluation of RTCAST middleware
� Implementation and evaluation of RTPB middleware
� Design and Implementation of API libraries for RT Channel,

RTCAST, and RTPB services
� Migration of Orchestra fault-injection tool to x-kernel MK

platform. Experimental evaluation of Open Group’s GIPC and
ARMADA middleware

� Complete specification of radar tracking and analysis app.
� Ongoing implementation & demonstration of RTHP application

on the ARMADA middleware

NT Implementation of ARMADA Middleware

Proposed JPL Interaction

1) Demonstration of ARMADA middleware to support software-
implemented fault-tolerance on JPL testbed; includes active &
passive replication, and time-constrained communication

2) Exploration & evaluation of ARMADA middleware on NT

3) Implementation & demonstration of a representative X2000
application on our middleware

Proposed JPL Interaction

Start date / duration: Oct.98 / one month

Plan: remote software installation + 1 week visit

ARMADA
middleware on JPL
testbed

Requirements: 4 PCs running MK and 1 SUN
Solaris; technical support from JPL

Start date / duration: Jan. 99 / three month

Plan: remote software installation + periodic visits

ARMADA on NT
demonstration &
evaluation

Requirements: 4 PCs running NT and 1 SUN
Solaris; technical support from JPL

Start date / duration: Nov. 98 / four month

Plan: remote software installation + extended visits

X2000 application
on ARMADA
middleware

Requirements: several PCs; specification and
development of X2000 application by JPL team

Products: ARMADA middleware software / demonstration

